Current-Voltage Modeling of the Enzymatic Glucose Fuel Cells
نویسندگان
چکیده
Enzymatic fuel cells produce electrical power by oxidation of renewable energy sources. An enzymatic glucose biofuel cell uses glucose as fuel and enzymes as biocatalyst, to convert biochemical energy into electrical energy. The applications which need low electrical voltages and low currents have much of the interest in developing enzymatic fuel cells. An analytical modelling of an enzymatic fuel cell should be used, while developing fuel cell, to estimate its various parameters, to attain the highest power value. In this paper an analytical model for enzymatic glucose membraneless fuel cell with direct electron transfer was developed. The adequacy of the model was estimated by comparison with fuel cells parameters. The electrical characteristics of fuel cells are interpreted using this model, based on theoretical consideration of ions transportation in solution. The influence of the hydrogen ions, glucose and enzyme concentration and also a thickness of enzyme layer on electrical parameters of a fuel cell were investigated. The electrical parameters such as a current, a voltage, a power were calculated by the model, for various parameters of the fuel cells. The model aimed to predict a hydrogen ions current, an electrical voltage and an electrical power in enzymatic fuel cell with direct electron transfer. The model reveals that increasing the rates of hydrogen ions generation and consumption leads to higher value of current, voltage and power.
منابع مشابه
Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell
In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...
متن کاملPerformance modeling and parametric investigation of a solid oxide fuel cell (SOFC)
In his paper, performance modeling and parametric study of a tubular solid oxide fuel cell (SOFC) fed by hydrogen was conducted. The components of the fuel cell system and its reactions were entirely modelled and an electrochemical analysis done for it. A variety of modeling parameters including temperature, working pressure and the air mass- flow rate have been investigated in order to observe...
متن کاملRecent Advances in Enzymatic Fuel Cells: Experiments and Modeling
Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily func...
متن کاملLead-Lag Controllers Coefficients Tuning to Control Fuel Cell Based on PSO Algorithm
One of the most important Fuel cells (FCs) is Proton Exchange Membrane Fuel Cells (PEMFCs). The outputvoltage of this FC depends on current loads. This paper tries to introduce, implement and control the voltage ofPEMFC, during load variations. The output voltage of fuel cell should be constant during load variation. Toachieve this goal, a controller should be designed. Here, the Lead-Lag contr...
متن کاملGlucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance
Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiol...
متن کامل